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A validated network of effective amygdala connectivity
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Regulatory interactions with the amygdala are thought to be critical for
emotional processing in the extended limbic system. Structural equation
modeling (path analysis) is a widely used method to quantify interactions
among brain regions based on connectivity models, but is often limited by
lack of precise anatomical and functional constraints. To address this
issue, we developed an automated elaborative path analysis procedure
guided by known anatomical connectivity in the macaque. We applied this
technique to a large human fMRI data set acquired during perceptual
processing of angry or fearful facial stimuli. The derived models were
inferentially validated using a bootstrapping split-half approach in pairs
of 500 independent groups. Significant paths across the groups were used
to form a rigorously validated and consistent path model. We confirm and
extend previous observations of amygdala regulation by an extended
prefrontal network encompassing cingulate, orbitofrontal, insular, and
dorsolateral prefrontal cortex, as well as strong interactions between
amygdala and parahippocampal gyrus. This validated model can be used
to study neurocognitive correlates as well as genotype or disease-related
alterations of functional interactions in the limbic system.
Published by Elsevier Inc.

Introduction

The limbic system is essential to emotional processing (LeDoux,
2000). The amygdala is a critical node in this network, and is
necessary for imbuing percepts with affective significance, especially
for fearful or dangerous environmental stimuli (Amaral and Price,
1984; LeDoux, 2000). In agreement with this, studies of patients with
lesions in the amygdala (Adolphs et al., 1994) have consistently
shown deficits in the ability to identify the affect of faces. Functional
neuroimaging studies have also implicated amygdala activity in fear
response (Morris et al., 1996; Hariri et al., 2000) with highest
amygdala response to fearful or angry faces.
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However, while the amygdala is a central part of the neural
circuitry for emotion, it does not operate in isolation. In fact, the
importance of functional interconnectedness between component
structures of the “limbic lobe” was stressed even in 1937, when
Papez emphasized their “harmonious mechanism” as the basis of
emotional regulation (Papez, 1995). Functional interactions
between component structures in the limbic system are wide-
ranging. Tracer studies in macaque monkeys show that the
amygdala is extensively anatomically connected with cortical
areas including cingulate, prefrontal cortex, parahippocampal
gyrus, and insula (Barbas and De Olmos, 1990; Amaral and Price,
1984; Ghashghaei and Barbas, 2002; Stefanacci et al., 1996) and
subcortical areas including the hippocampus (Saunders et al.,
1988). Therefore, defining the functional limbic network is
expected to provide a better characterization and classification of
healthy and abnormal function related to emotional cognition and
regulation. Network definition requires neuroimaging methodol-
ogy which takes functional interconnections into specific account.
Here, we use structural equation modeling (SEM) or path analysis,
a procedure to identify directional interaction among regions given
the pairwise correlations of their time series, in a large data set of
83 healthy humans scanned during a well-validated task involving
perceptual judgment on angry and fearful faces (Hariri et al.,
2002).

SEM has been applied in functional neuroimaging for over a
decade (McIntosh and Gonzalez-Lima, 1994; Bullmore et al.,
2000; Steele et al., 2004). Despite its wide acceptance in the field,
applying SEM to neuroimaging data is not straightforward. One
important difficulty comes from the fact that results from SEM as it
is commonly used are only inferential insofar as they support or do
not support an a priori model of connectivity. This poses a problem
since our current anatomical knowledge often does not constrain
modeling of interactions to a sufficient degree in the highly
interconnected limbic system.

To overcome this obstacle, we used an elaborative approach: we
started with a “nuclear model” specifying only a small number of
very well validated connections (Ghashghaei and Barbas, 2002;
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Paus, 2001; Phillips et al., 2003) and then used a data-driven search
algorithm (Bullmore et al., 2000; Sorbom, 1989) to iteratively add
paths, constrained by known anatomical connectivity (Kötter,
2004), until a parsimonious model was formed. Since the final
model selected was thus guided by the data, it is possible that
derived paths might reflect noise in the sample and not the inherent
causal structure of the data. To guard against this eventuality of
over-fitting and to provide a stringent test of the derived model, a
bootstrapping approach was used in which the subject pool was
combined into pairs of 500 independent groups, with each group
containing 20 subjects, in order to verify the models. For each pair,
a path model was independently derived on the first group of the
data and then forced upon the second group for inferential
Fig. 1. Methodology for automated path analysis procedure used to generate one m
made from the average across subjects of the time series for each region. An elabo
arrow) to a predefined nuclear model (yellow arrows) constrained by anatomical co
the anatomical connectivity matrix (lower left corner) colored black represent pa
rejected from the model.
validation. Significant paths across the first group of each pair were
used to form a rigorously validated and consistent path model.

Our results show that a well-fitting model of limbic circuitry
can be derived and statistically validated from functional MRI. The
properties of the model confirm and extend current knowledge
about functional interactions in the human limbic system and
provide a framework of effective connectivity that can be used to
study genetic and disease-related variation across individuals.

Materials and methods

The automated path analysis procedure used on the first group
of each pair is shown graphically in Fig. 1 and largely follows
odel. Regions of interest were selected and an inter-correlation matrix was
rative path analysis procedure was then used to iteratively add paths (orange
nnectivity until a parsimonious model was formed. The off diagonal terms in
ths with known evidence against a direct anatomical connection that were



Table 1
Coordinates for regions used in modeling

Region MNI coordinates

Supragenual cingulate (BA 32) 0 34 30
Subgenual cingulate (BA 25) 0 15 −14
Orbitofrontal cortex (BA 11) −46 31 −9
(Para) Hippocampal gyrus −26 −19 −14
Lateral prefrontal cortex (BA 46) −56 26 25
Amygdala −26 0 −20
Posterior cingulate (BA 23) 0 −33 38
Insula −40 0 10

The MNI coordinates for each region are shown. 8 mm radius spherical
masks were made around each of these coordinates and then intersected with
maps of functional activation, deactivation, or connectivity to the amygdala
during the task.
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Bullmore et al. (2000) with exceptions in the use of modification
index (Sorbom, 1989), estimate of effective degrees of freedom
(Kruggel et al., 2002), model build based on a nuclear model, and
correlations derived from residual activity as discussed below.

Subjects

Eighty-three healthy subjects (33 male, age=28.27±7.92,
Edinburgh Handedness Inventory=0.92±0.09) gave written in-
formed consent and participated in an ongoing study according to
the guidelines of the National Institute of Mental Health
Institutional Review Board (Bertolino et al., 2001). Subjects were
screened for and cleared of neurological, psychiatric, or substance
abuse history and had no history of other significant medical
problems. All available scans of subjects meeting inclusion criteria
(handedness >0.8 and 18≤age≤50) and of sufficient quality (see
below) were used. Data from subjects including the present cohort
from this ongoing experiment have been published previously
(Meyer-Lindenberg et al., 2006; Pezawas et al., 2005).

The data were randomly sampled (without replacement) 500
times to create pairs of two groups containing 20 subjects each.
Within each pair, groups were matched for age, gender, and
handedness, using an independent 2-sample t-test with a threshold
of P>0.05 as criterion.

Experimental paradigm and image processing

During a block design face matching paradigm described
previously (Hariri et al., 2002), subjects were asked to match one
of two simultaneously presented faces with negative emotional
affect, fear and anger (Ekman and Friesen, 1976) to an identical
target image. As a control task, subjects were asked to match
geometric shapes in a similar way. Four blocks of face matching
served as the activation task which was interleaved with five
blocks of control matching. Subjects were scanned using a GE
Signa 3T scanner (Milwaukee, WI) using a gradient echo EPI
sequence designed for BOLD fMRI (24 axial slices, 4 mm
thickness, 1 mm gap, TR/TE=2000/28 ms, FOV=24 cm,
matrix=64×64). Images were processed as described previously
(Meyer-Lindenberg et al., 2006) using SPM99 (http://www.fil.ion.
ucl.ac.uk/spm/).

Images were realigned to the middle image of the scan run,
spatially normalized into a standard stereotactic MNI space using
an affine and nonlinear transformation, smoothed with an 8-mm
FWHM Gaussian filter, and ratio normalized to the whole-brain
global mean. A statistical image for the contrast of emotional faces
versus the control task was obtained for each subject. The
functional MRI data were quality checked and clear of artifacts
and low signal to noise ratio.

Region selection

Eight brain regions in the left hemisphere were selected based
on prior knowledge of their interaction in an emotional network
and activation or functional connectivity to the amygdala (Mayberg
et al., 1999; Meyer-Lindenberg et al., 2005; Pezawas et al., 2005).
The selected regions were supragenual cingulate (Brodmann Area
(BA) 32), subgenual cingulate (BA 25), posterior cingulate (BA
23), orbitofrontal cortex (BA 11), parahippocampal gyrus includ-
ing hippocampus (PHG), lateral prefrontal cortex (BA 46),
amygdala, and insula. Eight millimeter radius spherical masks
were placed at the chosen coordinates, which were guided by two
lines of inquiry: (1) previously published (Meyer-Lindenberg et al.,
2005; Pezawas et al., 2005) locations as well as (2) coordinates of
highest activation, deactivation, or connectivity to the amygdala in
a sample largely the same as the entire subject pool sample, as
ascertained by a second-level random effects analysis. The selected
regions and their coordinates are shown in Table 1. In order to gain
functional specificity and obtain regionally specific gray matter
masks, the spherical masks were then intersected with binarized
functional activation maps (from the one-sample t-test of functional
activation) thresholded at P<0.05 FDR corrected for multiple
comparisons. In this way, all studied voxels were guaranteed to
show significant task-related differential activity or functional
connectivity to the amygdala through the duration of the task.

Known anatomical connectivity in the macaque monkey

It is possible that an automated path analysis procedure could
derive connections that are not directly anatomically based. These
connections could, for example, reflect interactions that are
mediated by other regions or arise spuriously in the context of
an incorrectly specified anatomical model (McIntosh and Gonza-
lez-Lima, 1994). To take this source of confounds into account, the
model search was constrained to reject paths with known evidence
against a direct anatomical connection. Since human data are
incomplete, we used studies of the macaque monkey, determined
largely using the Collations of Connectivity on the Macaque Brain
(CoCoMac) database (www.cocomac.org) (Kötter, 2004) and
supplemented by literature searches from Pubmed (http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed) specifying the
names of the regions. Only those connections with all positive
evidence against their existence according to our operational
definition were excluded from the model. Table 2 includes
references for each pathTs anatomical connectivity. Since known
anatomical connectivity in the macaque does not constrain a path
model enough to allow for an identified model, an automated path
analysis procedure (described below) was used to iteratively add
paths to build a parsimonious model.

Interregional correlation matrix

The median time series for all voxels in each of the p regional
masks (here p=8) was extracted for each subject. Sustained shifts
in BOLD relative to the presence of task were removed to
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Table 2
Matrix of anatomical connectivity in the macaque monkey

Amygdala Lateral PFC (BA 46) Insula OFC (BA 11) PHG Posterior cingulate
(BA 23)

Subgenual
(BA 25)

Supragenual
(BA 32)

Amygdala <> 1 (SA00-
46:SA00-Ld)

X (MM82a-
INS:MM82c-amg)

1 (SA00-
11:SA00-Ld)

Y (Stefanacci et al. (1996);
Saunders et al. (1988))

X (Al92-25:Al92-Bi) X (Al92-
25:Al92-Bmg)

X (SA00-32:SA00-Ldi)

Lateral PFC
(BA 46)

0 (PCG81-
amg:W40-46)

<> X (MM82a:
W40-46)

X (PP99-
11:PP99-46)

0 (Insausti and Munoz (2001)) X (B88-23:B88-46v) 0 (CCTCR00-
25:CCTCR00-46)

X (PP99-32:PP99-46)

Insula X (CP95a-
Abpc:CP94-Lai)

Y (Mufson and
Mesulam (1982))

<> Y (Mufson and
Mesulam (1982))

N Y (Mufson and
Mesulam (1982))

1 (CP94-
25:CP94-Iapm)

3 (CP94-32:CP94-Iai)

OFC (BA 11) X (PCG81-
amg:W40-11)

3 (CP94-
46:SA94A-11)

X (B88-
Id:B88-11)

<> Y (Morecraft et al. (1992);
Cavada et al. (2000))

X (B88-23:B88-11) X (B88-
25:B88-11)

3 (CP94-32:AP84-11)

PHG Y (Stefanacci
et al. (1996))

N N Y (Insausti and
Munoz (2001))

<> N N N

Posterior Cingulate
(BA 23)

0 (AP84-
B:AP84-23)

1 (PP94-
46:VPR87-23)

X (JB76a-
Id:VPR87-23)

1 (PP94-11:
MCSGP04-23)

Y (Kobayashi and Amaral
(2003))

<> 0 (VPR87-
25:VPR87-23)

1 (PP94-32:VPR87-23)

Subgenual (BA 25) X (AP84-
B:AP84-25)

0 (BP89-
46:BP89-25)

X (CP94-
Iam:CP94-25)

X (PP84-11:
VP87-25)

N 0 (BGDR99-
23:BP89-25)

<> 3 (BP89-32:BP89-25)

Supragenual
(BA32)

3 (AP84-
B:AP84-32)

X (BP89-
46:BP89-32)

X (B88-
Ig:B88-32)

N Y (Insausti and Munoz (2001)) X (B88-23:B88-32) 3 (B89-
25:B89-32)

<>

The anatomical connectivity as determined largely by queries to the Cocomac database (www.cocomac.org) and supplemented with searches to Pubmed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
DB=pubmed) is shown. The matrix is read as column connecting to row, i.e. amygdala connects to BA 46 with reference “0 (PCG81-amg:W40-46)”. Each cell is coded as follows: “0” represents no connection in all
Cocomac references and therefore the path is not allowed in the model; “1”, “2”, or “3” represents the density of the label with “3” being the strongest; “X” represents the label being present but of unknown density;
“Y” represents a confirmation of a connection based on a Pubmed search; “N” represents no reference found for the connection. A reference in parentheses follows each symbol. The references following “Y” are
listed in the references section below. The references following all other symbols are described in (Kötter, 2004). All symbols except “0” represent paths that were allowed in the model.
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minimize the impact of task-related coactivation on connectivity
measures, which gave “residual activity” time series. This was
done through a general linear model approach (as implemented in
SPM99). Because our region selection is focused on areas showing
significant task activation, our input data are therefore informed by
the cognitive task, but not exclusively or largely driven by task-
related activation changes. We have used this approach in previous
analyses of effective connectivity to derive models in good
agreement with known neuroanatomy and physiology (Meyer-
Lindenberg et al., 2004; Pezawas et al., 2005). Extracted time
series were then averaged across subjects for each region. These
average time series are shown in Fig. 2. The pairwise correlations
between the average time series for each region were used to
compute the interregional correlation matrix, C, for the studied
groups.

The effective degrees of freedom, υ, for each regional average
time series were calculated from the data, using the autocorrelation
structure of the average time series, assuming an AR(1) model
(Kruggel et al., 2002) according to

υ ¼ N � Pð Þ 1� qð1Þ2
1þ qð1Þ2
 !

where N represents the number of time points in the MRI scan, P
represents the number of regressors, and ρ(1)2 is the squared first-
order autocorrelation.

Following Bullmore et al. (2000), Principal Component
Analysis (PCA) was used to estimate the residual variance, ψi,
Fig. 2. Average time series from the first group of subjects for each of the eight regio
above was extracted from all the subjects in the first group of the data for each regio
time series. The time series were averaged across subjects and the mean across the
axis gives the time in scans and the vertical axis gives the BOLD response in arb
for each region i. The residual variance was estimated from the
data as the ratio between the square of the first eigenvalue (λ1

2)
and the sum of the square of all m eigenvalues derived from the
PCA of that region.

wi ¼ 1� k21Pm
j¼1

k2j

Path analysis

The methodological goal of this study was to investigate an
automated method of path model construction rather than using an
a priori model as is the usual case in path analysis (Meyer-
Lindenberg et al., 2005; Steele et al., 2004; Büchel and Friston,
1997). Starting from a nuclear model (Meyer-Lindenberg et al.,
2005; Pezawas et al., 2005), new paths were added stepwise until
an optimally explanatory, but parsimonious model was reached.
The nuclear model was comprised of four predefined paths which
were kept unconstrained from zero at every iteration resulting in an
initial model with q=4 paths, where q is the number of paths
unconstrained from zero. The connections of orbitofrontal cortex
(OFC) to amygdala, amygdala to subgenual cingulate, subgenual
cingulate to supragenual cingulate, and supragenual cingulate back
to amygdala comprised our nuclear model. For all other regions,
the model started with the p(p−1) vector of path coefficients, θ, all
constrained to zero for those paths.
ns used in the analysis. The time series from each of the eight regions labeled
n and for each subject. Activation related to the task was subtracted from the
500 groups with standard deviation error bars is shown here. The horizontal
itrary units.
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In the path analysis procedure, the correlation matrix predicted
by the path model, Σ(θ), was derived using the Reticular Action
Model (RAM) defined by the so-called McArdle–McDonald
equation (McArdle and McDonald, 1984)

RðhÞ ¼ ðI � KÞ�1WððI � KÞ�1Þ V

where Ψ denotes a (p×p) diagonal matrix of the residual variances,
ψi, for each region, K denotes the (p×p) path model matrix
comprised of the vector of path coefficients, θ, and zeros along the
diagonal, I denotes a (p×p) identity matrix, and ((I−K)− 1)′ denotes
the transpose of the matrix operation.

The value of each unconstrained path coefficient in θ is found by
iteratively minimizing the maximum likelihood discrepancy function

FðC;RðhÞÞ ¼ logðdetðRðhÞÞÞ þ trðCR�1ðhÞÞ � logðdetðCÞÞ � p

in terms of the free components in θ. The value of (υ−1)×F(C, Σ(θ))
is a chi-square approximation for the model with 1/2 p (p+1)−q
degrees of freedom.

In our analysis, this calculation was implemented in Matlab
(Mathworks, Natick, MA) using Adaptive Simulated Annealing
(ASA) (www.ingber.com) (Ingber, 1989) as an annealing mini-
mization program that attends to some annealing schedule allowing
the minimization search to explore a broad space. This is used to
avoid finding values of θ that resulted in a local minimum. The
ASA C code was interfaced to Matlab by use of the ASAMIN
“mex” C code (www.econ.ubc.ca/ssakata/public_html). The mini-
mization was started with random seed values for the coefficients,
θ. Although we did not conduct a systematic study of differing
minimization procedures, the annealing approach and previous
successful application in a neuroimaging study (Steele et al., 2004)
made ASA a reasonable choice for global minimization.

In order to specify or force a model onto a particular group, the
matrix K can be specified a priori. However, in order to
automatically derive the model, a gradient descent approach was
used to find, at each step, the one path whose inclusion would most
improve the model fit with the observed correlation matrix. The
gradient descent approach was calculated for each possible path
coefficient l in θ as a Modification Index, MI, according to a
procedure in (Sorbom, 1989)

MI ¼ 1=2 ĝ
2
l

k̂l

where ĝl ¼
BF
Bhl

and k̂l ¼ B2F
BhlBhl

. The first order and second order

partial derivatives can be approximated (Cudeck et al., 1993)
according to

BF
Bhl

¼ 1
2
tr R�1 hð Þ R hð Þ � C½ �R�1 hð ÞCl

� �
B2F

BhlBhl
¼ 1

2
tr R�1 hð ÞClR

�1 hð ÞCl

� �
The matrix Cl comprises the partial derivatives of the modeled

covariance with respect to the lth path coefficient and is defined as

Cl ¼ Rðhþ elgÞ � RðhÞ
g

where el denotes a vector which has the length of the total possible
number of path coefficients, p(p−1), with all elements set to zero
except at the lth position which is set to one, and η is an arbitrarily
small constant set to η=10− 4 for this experiment.

The value of MI approximates the estimate of how much better
the model fits to the observed data when the coefficient l is
unconstrained from zero. The path coefficient with the greatest MI
value was therefore unconstrained from zero and incorporated into
the model. To guide this iterative process, since addition of more
paths always numerically improves the fit, it is necessary to use
goodness of fit parameters dependent on model parsimony.
Therefore we used Bollen’s parsimonious fit index (Bollen,
1988), ρ, which adjusts for both the fit with the observed
correlation matrix and the fewest number of paths possible.
BollenTs parsimonious fit index ranges from zero to one with one
being a perfectly parsimonious model, and is defined as

q ¼ ðv20=kÞ � ðv2q=k � qÞ
v20=k

where χ0
2 denotes the chi square for the model in which all path

coefficients are set to zero, χq
2 denotes the chi square for the model

with q nonzero paths, and k represents the number of non-
redundant elements in the observed correlation matrix and the
estimated residual variances

�
k ¼ 1

2
p pþ 1ð Þ

�
.

At each step, path coefficients resulting in the maximum
increase of ρ relative to the previous step were incorporated into
the model until no further improvement of parsimony was found.
The process of automatic construction can be seen in Fig. 3.

The generated model was checked to prevent unidentified
models which do not have unique solutions. In an unidentified
model, the number of nonzero paths, q, is greater than the number
of non-redundant elements in the observed correlation matrix and
residual variances, k. Thus, in our model, q was always restricted to
be less than k.

For validation, path models were automatically constructed for
the first group of each of the 500 surrogate data sets. Then, the path
model matrix automatically derived from the first group was forced
on the independent data of the second group by specifying K. The
model was considered validated for the pair when the model fit
both the first and second group data of a pair with a threshold of
P>0.05. Furthermore, to assess the significance of individual
paths, a mean and standard deviation were derived for each
coefficient across all validated models from the first group. Those
path coefficients in which the standard deviation from the mean did
not cross zero were deemed to be significant and are discussed
below.

For validation of the nuclear model, each path in the nuclear
model was removed (forced to zero) one at a time from the first
group automatically derived models. The modification index of
that removed path was compared to the modification index of all
other paths across the 500 groups in a repeated measures one-way
ANOVA.

Results

A model was independently derived from the first of each group
of 500 pairs. These models reached an average parsimonious fit
index of ρ=0.75±0.07, and all 500 derived models survived the
P>0.05 threshold. The maximum of the parsimonious fit index
across all 500 groups is shown in Fig. 3.

For validation, the connections derived automatically from the
first group in each pair were subsequently forced on the observed
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Fig. 3. Model fitting reached a maximum in parsimonious fit index. The
automatically constructed model which reached the maximum in parsimony
across the 500 groups is shown. During the automatic construction of each
model, paths were iteratively unconstrained from zero. Each path increased
the parsimonious fit index until a maximumwas reached. The model was run
over 25 iterations.

Table 3
Significant path coefficients

Path Mean value Standard deviation

Amygdala→PHG 0.282 0.105
Amygdala→Subgenual 0.111 0.042
Insula→Amygdala 0.087 0.086
OFC→Amygdala 0.075 0.032
OFC→BA46 0.164 0.139
Posterior Cingulate→Amygdala –0.074 0.049
Subgenual→ Insula 0.066 0.051
Subgenual→Supragenual 0.054 0.045
Supragenual→Amygdala –0.164 0.037
Supragenual→Posterior Cingulate 0.264 0.172

Path models automatically generated on the first group which also fit the
independent second group were averaged. Those coefficients in which the
standard deviation from the mean did not cross zero were deemed significant
and are shown here.
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correlation matrix derived independently from the second group in
that pair. 499 models which previously fit again survived the
P>0.05 threshold, meaning that the derived models could be
independently validated inferentially in the second independent
group of matched healthy subjects in all but one instance. The
derived models were therefore both parsimonious and fit the
observed data well.

In addition to validating the models as a whole in each pair, we
also desired to see which individual path coefficients were
consistent across pairs. For all the automatically derived models
that fit both the data set on which they were derived (first group)
and an independent matched data set (second group), the mean and
standard deviation of the automatically derived path models were
calculated for all paths and recorded for those path coefficients in
which the standard deviation from the mean did not cross zero. Ten
paths were found to make significant and consistent contributions
across the groups. These significant paths and their corresponding
coefficients are shown in Table 3 and Fig. 4.

The amygdala was found to be a hub of connections, having inter-
actions with the parahippocampal gyrus (PHG), subgenual cingulate,
OFC, posterior cingulate, insula, and supragenual cingulate. The paths
from amygdala to PHG, supragenual cingulate to amygdala, and
supragenual cingulate to posterior cingulate were especially strong.

In order to determine if the a priori nuclear model provided a
good fit to the data, each path in the nuclear model was removed
and the modification index of the removed path was compared to
the distribution of modification indices for each coefficient. The
results for this calculation are shown in Table 4. The modification
index was significantly higher for the all the removed paths in the
nuclear model than the distribution of modification indices for all
the other paths. These high modification indices suggest that the
nuclear model is justifiably included.

Discussion

In the present work, we used a data-driven approach to
construct a parsimonious model of effective connectivity during
neural processing of fearful stimuli that was validated using a
bootstrapping approach in a large data set of healthy participants.
Our data show that iterative search algorithms guided by known
neuroanatomy are a feasible approach to the characterization of
neural interactions in the human brain. The derived model confirms
and extends previous results on human amygdala regulation.

Each of the path coefficients in the model represents a
directional influence from one brain region to another across the
time of the task. A positive (negative) coefficient is interpreted as
the degree to which increases in BOLD activity in the parent region
predict increases (decreases) in the child region. Since the signal is
derived from the BOLD response, positive or negative coefficients
cannot naively be assumed to represent excitation or inhibition,
respectively. BOLD response is generally thought to be a
combination of both excitatory and inhibitory input to a neuronal
region that cannot be independently estimated using fMRI
(Logothetis et al., 2001; Arthurs and Boniface, 2002) although
some studies have shown neural excitatory input to be more
representative of the BOLD signal (Waldvogel et al., 2000). Also,
the neural understanding of a decrease in BOLD signal remains
controversial (Harel et al., 2002; Raichle, 1998) but a recent study
has shown that decreases in BOLD signal correlate to a suppres-
sion of neural activity (Shmuel et al., 2006).

Although establishing effective connectivity through path
analysis is useful, it does have drawbacks. Path analysis uses
covariances or correlations as the primary data, ignoring the arrow
of time as well as any mutual information between regions which is
not correlative (such as higher order or nonlinear dependencies).
Dynamic Causal Modeling (DCM) is able to take this information
into account and is also better able to represent neural interactions
directly by explicitly modeling the dependence of BOLD signal on
neural response (Penny et al., 2004). However, DCM also does
require a predefined network of interaction and does not yet
provide an inferential test of goodness of fit of the model. For both
SEM and DCM, even if directionality is correctly estimated,
modeling results do not prove causality but only infer how well the
specified directional model is able to represent the given data. In
SEM, the relevance of model fit, per se, for the neurobiological
usefulness of a model of effective connectivity also depends on the
specific question asked (Protzner and McIntosh, 2006). Addition-
ally, our large data set enabled an extensive resampling proce-
dure for model verification. If fewer subjects are available, other



Fig. 4. Automatically derived path model. Yellow paths indicate those that were part of the nuclear model and forced to be in the model at every iteration. Orange
paths were automatically derived from the data using the automated procedure. Each region is represented by circles, and coordinates of each region are given in
Table 1. The transparency of the circles representing each region determines how far lateral (more transparent) or medial (less transparent) the regions are. Each
number represents the path coefficient or the directional influences from one brain region to another across the time interval of the task. Each path shown here was
significant according to the criteria defined above.
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resampling methods, such as bootstrapping with replacement
across pairs (non-independent pairs) could be used instead.

Here, we introduced an elaborative approach starting from a
nuclear model based on previous work and iteratively adding
additional paths. There is no guarantee that the model derived by
this procedure is “the best” model possible, since an exhaustive
search of the model space is not computationally feasible
(Bullmore et al., 2000). However, features of the connectivity
structure found in the present study are supported by an extensive
body of previous work.

In particular, the loop linking amygdala to subgenual cingulate
to supragenual cingulate and back to amygdala was backed by
previous studies (Pezawas et al., 2005; Meyer-Lindenberg et al.,
2005) and anatomical connectivity (Ghashghaei and Barbas, 2002;
Paus, 2001; Phillips et al., 2003) and was supported by the current
model. We have hypothesized that these results are consistent with
a negative feedback loop for amygdala function in the context of
fear extinction (Pezawas et al., 2005). The amygdala is
hypothesized to feed bottom-up information to the subgenual
cingulate regarding the emotional coloring of events (Amaral and
Price, 1984; Phillips et al., 2003). The negative connection from
supragenual cingulate back to amygdala is consistent with
behavioral data in rodents where electrical stimulation of the
Table 4
Nuclear model modification indices

OFC→Amygdala Supragenual→Amygdala

F-value 14.00 55.75
P-value 0.0045 <0.00001

To test the significance of each path in the nuclear model, each path within the nucle
the first group in the 500 pairs. The modification index of that removed path was co
one-way ANOVA. The significance values for each modification index in the nuc
medial prefrontal cortex (mPFC) causes inhibition of several nuclei
within the amygdala decreasing fear response (Quirk et al., 2006;
Maren and Quirk, 2004) as well as in humans where data suggest
that the mPFC is an inhibitory input to the amygdala (Rauch et al.,
2006). Interestingly, both the negative connection from supragen-
ual cingulate to amygdala as well as a negative connection from
posterior cingulate to amygdala made a significant contribution to
the model. This indicates the importance of regulatory interactions
of the amygdala activity with more posterior cingulate cortex. This
interaction may have been missed by previous functional
connectivity studies (Pezawas et al., 2005) that were focused on
a part of the cingulate that also showed structural abnormalities in
the context of a genetic effect. Of interest in this context is a
subsequent study of another genetic variant implicated in amygdala
dysregulation that did indeed show structural abnormalities in
posterior cingulate (Meyer-Lindenberg et al., 2006).

Our model showed strong interactions of lateral prefrontal cortex
(BA 46) with OFC. This is in good agreement with anatomical data in
which OFC is extensively and reciprocally connected with dorso-
lateral prefrontal cortex (DLPFC) (Barbas and Pandya, 1989; Petrides
and Pandya, 1999) as well as with previously derived models in
which DLPFC exerts higher-level control over lower order regions in
the context of emotion regulation (Meyer-Lindenberg et al., 2005;
Amygdala→Subgenual Subgenual→Supragenual

36.76 4.71
<0.00001 0.034

ar model was separately forced to zero in the complete models derived across
mpared to the modification indices of all other paths in a repeated measures
lear model versus the modification index of all other paths are shown.
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Hariri et al., 2003; Levesque et al., 2003). The significant path
derived in our model has directionality from BA46 to OFC, which
may indicate the predominance of information flow from OFC
into higher order areas.

Amydgala and the OFC are strongly anatomically intercon-
nected (Ghashghaei and Barbas, 2002). OFC connections,
especially with the amygdala, are critical for stimulus-reinforce-
ment association learning (Pears et al., 2003) and are involved in
changing learned behavior based on feedback, such as punishment
(Kringelbach and Rolls, 2004). Together with this strong a priori
evidence and our own previous SEM work (Meyer-Lindenberg et
al., 2005), the present data further support the importance of this
interaction in the connectivity structure of the limbic system by
showing a consistent and independently significant contribution to
the effective connectivity model derived here.

We observed a strong connection from amygdala to the PHG
(including hippocampus), delineating a neural interaction thought
to be essential to the processing of emotional memory (Saunders et
al., 1988). Through increased interactions during observation of
emotional stimuli, the amygdala–hippocampal connection has been
observed to be enhanced during both memory encoding and
consolidation in both animal models (McGaugh, 2000; McGaugh
and Roozendaal, 2002) and human studies (Dolcos et al., 2004;
Phelps, 2004; Smith et al., 2006). The connection in our model is
thus consistent with experimental evidence for amygdala regulated
hippocampal function in emotional memory.

In a larger context, Phillips et al. (2003) have hypothesized the
existence of a dorsal and a ventral stream of emotional cognition, a
proposal which is largely consistent with the interactions observed
here. The ventral stream is posited to appraise emotional behavior
and produce an affective state, whereas the dorsal stream acts as a
regulatory mechanism for the ventral stream. The hypothesized
ventral stream is comprised of the amygdala, subgenual cingulate,
OFC, and insula. The insula and the amygdala have been im-
plicated as part of both the identification of emotional significance
of the stimulus and the production of an affective state in response
to that stimulus (Calder et al., 2001). The OFC and subgenual
cingulate have been shown through lesion and neuroimaging
studies to affect the production of an emotional response to a
stimulus (Paus, 2001; Kringelbach and Rolls, 2004). Our model
quantifies interactions between these regions of the hypothesized
ventral stream of emotional processing.

The dorsal system is comprised of supragenual cingulate,
hippocampus, and lateral prefrontal cortex. All of these structures
are important for emotional regulation, possibly through reciprocal
interaction with structures in the ventral stream. The posterior
cingulate is not explicitly named as being part of the dorsal
stream; however, its location in the dorsal cingulate and strong
negative connection to the amygdala observed here are consistent
with a regulatory function with respect to the amygdala. Also the
strong negative connection from supragenual cingulate to
amygdala is consistent with the interpretation of a dorsal
inhibitory stream regulating production of an affective response
to an emotional stimulus by the ventral system.

In summary, we have derived and verified an effective con-
nectivity network during processing of fearful and angry emotional
stimuli in the human brain using fMRI. This model largely
confirms and extends previous accounts of amygdala interactions
in the context of emotional regulation (Pezawas et al., 2005;
Phillips et al., 2003). We hope that this model will be usefully
applied in the study of disease states hypothesized to affect
connectivity in the brain, such as schizophrenia. It can also be used
to study genetic variation impacting on connectivity and emotional
processing, such as the COMT val157met variant (Drabant et al.,
2006) and 5-HTTLPR, which has been shown to have an effect on
functional connectivity (Pezawas et al., 2005). The application of
an anatomically plausible and independently validated model
should provide additional power in ascertaining subtle biological
effects, complementing traditional neuroimaging analysis.
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